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Abstract

Large-eddy simulations (LES) of transition to turbulence in a horizontal annular cavity are performed, using a dynamic sub-grid scale
model and second order schemes for time and space discretizations. Solutions for Prandtl number of 0.707 and Rayleigh number up to
7.5 � 105 are obtained. The onset of transition to turbulence and turbulence regimes are pointed out, as well as the dynamic character-
istics of the thermal plume transition. The instantaneous and time average behavior of the flows, related to the velocity and temperature
fields, are analyzed and compared with numerical and experimental results from other authors. The influence of transitional and turbu-
lent flows on local and mean Nusselt number are also investigated.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Natural convection; Transition to turbulence; Dynamic model
1. Introduction

The natural convection problem in horizontal annular
cylindrical cavities has been the subject of research over
the last seven decades. This is due to the numerous techno-
logical applications in several engineering areas (nuclear,
aeronautics, solar, mechanics and others). In this section,
we present a brief review of selected experimental and
numerical papers which allows to know the advances in
transition to turbulence and turbulence research.

One of the first investigations, Beckmann [1], considered
an annular cavity between concentric cylinders in the hor-
izontal position filled with air, hydrogen and carbon diox-
ide. Several values of radii ratio (g) were considered in
order to analyze their influence on the overall heat transfer
coefficient. Later, other investigations [2–4] were done in
order to study the effect of different parameters on the local
and overall heat transfer coefficient for several kinds of flu-
ids. New experimental techniques allowed to obtain impor-
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tant informations concerning to stable and unstable flows
[5–9]. Kuenh and Goldstein [7] studied natural convection
in annular cavities filled with pressurized nitrogen over a
Rayleigh number range of 2.2 � 102

6 Ra 6 7.7 � 107

and for g = 2.6. The results showed that the flow is unsta-
ble in the plume region for Ra = 2 � 105 and that the flow
becomes turbulent as Ra is increased. Also, they reported
that over the inner cylinder the flow is turbulent and that
under the inner cylinder the flow is laminar. McLeod and
Bishop [8] studied this problem using helium at cryogenic
temperatures for 8 � 106

6 Ra 6 2 � 109 and for expan-
sion number 0.25–1.0. They have presented sketches that
show the oscillating thermal plume for Ra = 1 � 107 and
the dramatic changes of this structure as Ra is increased
up to 109. Labonia and Guj [9] have performed experi-
ments to analyze oscillatory and transitional flows for
0.90 � 105

6 Ra 6 3.37 � 105 and for g = 2.36, using air
at atmospheric pressure. It was verified that the mecha-
nisms of transition to chaos have been differentiated by dif-
ferent dynamical indicators. Most of the referred authors
have presented correlations to calculate the heat transfer
coefficient. A new correlation is presented by Itoh et al.
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Fig. 1. Sketch of the physical configuration.
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[10], which is based on the redefinition of the characteristic
length.

Analytical solutions were one of the first method used to
analyze natural convection. Expansion in series, perturba-
tion method and boundary layer theory were also used.
Since the work of Crawford and Lemlich [11], that used
the interactive method of Gauss Seidel, numerical methods
have been considered as an interesting and very promising
tool of analysis and investigation of laminar [12–16] and
turbulent [17–19,23,25] flows. Results for two-dimensional
simulations using k–e model (considering symmetry in the
vertical plane) were presented by Farouk and Guc�eri [17],
Kenjeres and Hanjalic [19] and Char and Hsu [18].
Three-dimensional analysis of laminar flows were per-
formed by Fusegi and Farouk [20] and Vafai and Ettefagh
[21,22]. After, Desai and Vafai [23] used a wall function
approach coupled with the standard k–e model to analyze
flows for 1 � 106

6 Ra 6 1 � 109 and for several values
of Pr (Prandtl number) and g. Information about the
unstable nature of the turbulent natural convection are pre-
sented in [24,25]. Fukuda et al. [24] employed direct numer-
ical simulation for Ra up to 6 � 105, Pr = 0.71, g = 2.0 and
aspect ratio k = 2.8. The results of flow’s oscillations in
transition to turbulence and some characteristic of thermal
plume were presented. Miki et al. [25] used the LES tech-
nique with the Smagorinsky sub-grid scale model for
2.5 � 106

6 Ra 6 1.18 � 109 and for several values of Pr,
g, k and the Smagorinsky constant. The effects of these
parameters on turbulent properties were pointed out.

The above-mentioned works have contributed significa-
tively to understand of natural convection problem in hor-
izontal annuli. Moreover, the regime of transition to
turbulence has been not extensively studied. On the other
hand, the study of transition to turbulence requires a well
resolved direct numerical simulation, but, for the majority
of the problems, it is not yet possible due the actual com-
putational resources. In this context, in the present work
the authors look for to contribute to this challenging prob-
lem using LES methodology with dynamic sub-grid scale
model.
2. Physical problem

The physical problem, analyzed in the present work, is
the flow generated by natural convection in a horizontal
annular cavity, filled with air. The fluid properties are:
the kinematic viscosity m, the thermal diffusivity a, the ther-
mal expansion coefficient b, and the thermal conductivity,
j. The domain of analysis is bounded by two concentric
cylinders with isothermal surfaces of axial length La, as
shown in Fig. 1. The radii of the inner and outer cylinders
are Ri and Ro and the surface temperature are Ti and To,
respectively, for the inner and outer cylinders, where
Ti > To. The width of the gap L = Ro � Ri and the dimen-
sionless parameters radii ratio g = Ro/Ri and the aspect
ratio k = La/L were defined. Additionally, two other
dimensionless parameters were defined, the Rayleigh and
the Prandtl numbers:

Ra ¼ gbðT i � T oÞL3

ma
; Pr ¼ m

a
; ð1Þ

where g is the acceleration of gravity.

3. Mathematical model

The mathematical formulation, for the described physi-
cal problem, is based on the fundamental laws for trans-
port phenomena, resulting in mass conservation, Navier–
Stokes and energy equations. The fluid is considered as
incompressible and Newtonian with constant physical pro-
prieties, except for the buoyancy force which is modeled via
the Boussinesq approximation. The density variation is
caused by fluid’s thermal expansion, and it is given by
q = qo(1 � b(Ti � To)) with b = �(1/qo)(oq/oT)p, where
qo is the density at a reference temperature. The resulting
dimensionless equations are obtained using the length scale
L, the velocity scale m/L, the pressure scale qom

2/L2, the
temperature scale (Ti � To) and the time scale L2/m. So,
the mass conservation, the momentum and the energy
equations are given by

oui

oxi
¼ 0; ð2Þ

oui

ot
þ oðuiujÞ

oxj
¼ � 1

qo

op
oxi
� Ra

Pr
Tgi þ

o

oxj

oui

oxj
þ ouj

oxi

� �
; ð3Þ

oT
ot
þ oðujT Þ

oxj
¼ o

oxj

1

Pr
oT
oxj

� �
; ð4Þ

where ui are the velocity components, p is the pressure, T is
the temperature and Gr = Ra/Pr is the Grashof number.
The directions of gi components are (�sin/,�cos/, 0),
where / is angular direction (Fig. 1).

The no-slip and the impermeability boundary conditions
are imposed at the cylinder surfaces, as well as the temper-
ature. In the axial and angular directions the periodic
boundary condition is applied for all variables.
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3.1. Turbulence model

The LES methodology [26] consider the decomposition
of flow variables, e.g. ui, into a large scale component
ð�uiÞ and a sub-grid scale ðu0iÞ component using a filtering
process [27]. It requires the use of a filter function
G(x,x0), which is, for the present work, a simple local grid
average. So, the filtered velocity is defined by

�uiðxÞ ¼
Z

uiðx0ÞGðx; x0Þdx0: ð5Þ

The filtering process applied to the Navier–Stokes equa-
tions and to the energy conservation equation provide sim-
ilar equations like (2)–(4). When the advective terms
oðuiujÞ=oxj and oðujT Þ=oxj are decomposed, one obtains
the global sub-grid tensor and the global heat flux [28] de-
fined as sij ¼ �ðuiuj � �ui�ujÞ and qj ¼ �ðujT � �ujT Þ.

Considering that the sub-grid scales are more homoge-
neous and isotropic and also less affected by boundary
conditions, the sub-grid Reynolds stress tensor and the
sub-grid heat flux, are modeled using the Boussinesq
hypothesis. As presented in [26,29] these sub-grid tensor
and sub-grid flux may be given by

sij ¼ �2mtSij þ
2

3
kdij; ð6Þ

qj ¼ �at

oT
oxj

; ð7Þ

where, mt, at, k and dij are the turbulent viscosity, the turbu-
lent diffusivity, the turbulent kinetic energy and the Kro-
necker delta, respectively. The strain rate tensor is
defined as:

Sij ¼
1

2

o�ui

oxj
þ o�uj

oxi

� �
: ð8Þ

Incorporating the Eqs. (6) and (7) to the filtered Navier–
Stokes equations and adding the turbulent kinetic energy
to the pressure term, the turbulence equations are given by

o�ui

oxi
¼ 0; ð9Þ

o�ui

ot
þ oð�ui�ujÞ

oxj
¼ � o�p

oxi
� Ra

Pr
T gi þ

o

oxj
mef

o�ui

oxj
þ o�uj

oxi

� �� �
;

ð10Þ
oT
ot
þ oð�ujT Þ

oxj
¼ o

oxj
aef

oT
oxj

� �
; ð11Þ

with

mef ¼ 1þ mt; aef ¼
1

Pr
þ mt

Prt

: ð12Þ

Several values of the turbulent Prandtl number (Prt) have
been used to solve turbulent flows with heat transfer, e.g.
Eidson [29] has used Prt = 0.4 and Yoshizawa [30] and
Miki et al. [25] have used 0.83. In the present work,
Prt = 0.6 was used as in Silveira-Neto et al. [31]. The mt is
calculated using the dynamic sub-grid scale model [32,33].
3.2. Dynamic sub-grid scale model

The dynamic sub-grid scale model, proposed by Ger-
mano [32], represents an important advance over the Sma-
gorinsky model [26] due to the fact that Smagorinsky
constant was replaced by a dynamic function Cð~x; tÞ, eval-
uated during the simulation. This procedure eliminates
some problems like the use of an ad-hoc constant in the
use of a sub-grid model for transitional flows, turbulent
rotational flows and for flows near walls.

The Germano [32] model is based on an algebraic iden-
tity between the sub-grid Reynolds stress tensor and the
resolved turbulent tensors for two level of the filtering pro-
cess. The second filter, called the test filter, is performed
using the small resolved scales. Hence, the relation devel-
oped for Cð~x; tÞ by Germano [32] and modified by Lilly
[33] is expressed as:

Cð~x; tÞ ¼ � 1

2

LijMij

MijMij
: ð13Þ

The Leonard tensor Lij and the tensor Mij are defined by

Lij ¼d�ui�uj � b�uib�uj; ð14Þ

Mij ¼ bD2jbS jbS ij � dD2jSjSij ; ð15Þ

where operator (^) represents the test filtering process. The
characteristic grid filter width is D ¼ ð

Q3
i¼1DiÞ1=3 (Di is the

grid step in the i direction), the characteristic test filter
width is bD ¼ 2D [32,33] and the magnitude of the strain

rate tensor is given by jbS j ¼ ð2bSij
bS ijÞ1=2. The test filter is

a box filter, applied by a three-point weighed averaging
in i direction.

By assuming that the sub-grid scales are in local equilib-
rium, for which a balance holds between the sub-grid scale
turbulent production and turbulent dissipation rate, the mt

can be derived as:

mt ¼ Cð~x; tÞD2jSj: ð16Þ

Eq. (13) can present negative values of Cð~x; tÞ, resulting in
negative mt, that is interpreted as the modeling for the back-
scattering energy transfer process [32,34,35]. Unfortunately,
negative values of Cð~x; tÞ lead to numerical instability.
Therefore, the criterion Cð~x; tÞ ¼ max½0:0;Cð~x; tÞ� was used
[36,37].
4. Numerical method

The governing equations were discretized using the finite
volume method [38,39] on a staggered grid. The second
order time discretization of Adams–Brashforth and the sec-
ond order central difference scheme were employed. The
pressure–velocity coupling was performed by the frac-
tional-step [40]. Eq. (10) is fractioned in two steps called
predictor and corrector, defined by the following equations:



Fig. 2. Comparison with experimental data for Ra = 4.7 � 104 and
g = 2.6: (a) radial temperature profiles and (b) local Nusselt number.
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e�ui � �ut
i

Dt
¼ 3

2
F ð�uiÞt �

1

2
F ð�uiÞt�1 � o�p

oxi

� �t

; ð17Þ

�utþ1
i � e�ui

Dt
¼ � op0

oxi
; ð18Þ

where e�ui is the estimated velocity. The term F ð�uiÞ incorpo-
rates the advective, the diffusive and the buoyancy terms.
The application of the divergence of Eq. (18) leads to a
Poisson equation for the pressure correction p0, i.e:

o2p0

oxioxi
¼ 1

Dt
oe�ui

oxi

� �
: ð19Þ

The solution procedure used is: Eq. (17) is first solved fore�ui, p0 is calculated from Eq. (19), Eq. (18) is solved for cor-
rect �u at time step (t + 1) and finally, the pressure is cor-
rected by �ptþ1 ¼ �pt þ p0. The Poisson equation is solved
with the strongly implicit procedure (SIP) [41].

Usually, refined grid and small time step are required in
LES [42], where the time step depends basically on the Re

and on the grid dimension. In order to have stability, the
CFL (Courant–Friedrichs–Lewy) stability criterion was
used [43] with CFL = 0.25. A non-uniform grid was
employed in the radial direction (r) and an uniform grid
was employed in the angular (/) and axial (z) directions.
The grid was refined near the walls with an expansion/
reduction factor F = 1.05 in accordance with:

Dr ¼ aðF i�1Þ; a ¼ 1� F

1� F M=2

L
2

� �
; ð20Þ

where Dr is the grid spacing, M is the grid resolution in r

direction and 1 6 i 6M/2.
Fig. 3. Mean Nusselt number as function of Rayleigh number for g = 2
and 2.6; comparison with numerical and experimental results [6].
5. Results and discussion

5.1. Stable flow

Simulations were performed for 102
6 Ra 6 105, with

g = 2 and 2.6 and k = 1. A grid of 20 � 80 � 2 in r, /, z

directions (two-dimensional approximation) was used.
The Ra range was selected based on experimental results
[14,44], that show that the annular cavity flow become
unstable for Ra ffi 105. Previously, the grid independency
of solutions has been tested for Ra = 4.7 � 104 and
g = 2.6 with different grids. The variation in the mean Nus-
selt number obtained by 20 � 80 � 2 and 24 � 90 � 2 grids
is 0.33%.

The results obtained for Ra = 102–104 showed a stan-
dard flow, similar to the numerical results of [6,7,17,16].
For Ra = 102 the transport process is dominated basically
by diffusion and for Ra = 104 the advective transport pro-
cess predominates and the thermal plume appears in the
upper part of the cavity. When Ra is increased up to 105

a symmetrical but finer plume is obtained. Qualitative
and quantative comparisons were performed with numeri-
cal and experimental results of Kuenh and Goldstein [6]
and are present in Figs. 2 and 3.
The Nusselt numbers at the inner and outer cylinders
are represented, respectively, by Nui and Nuo. They are
given by
Nui ¼ Ri ln
Ro

Ri

� �
oT
or

����
r¼Ri

; Nuo ¼ Ro ln
Ro

Ri

� �
oT
or

����
r¼Ro

: ð21Þ



Fig. 4. Probe position and time distribution of the temperature for several Ra captured by probe B.
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The mean Nusselt number is also defined by

Nu ¼ Nui þ Nuo

2
; ð22Þ

where

Nui ¼
1

2pk

Z k

0

Z 2p

0

Nui d/dz;

Nuo ¼
1

2pk

Z k

0

Z 2p

0

Nuo d/dz: ð23Þ

The radial temperature distribution for / = 0�, 90� and
270� and the local Nusselt numbers Nui and Nuo are pre-
sented in Fig. 2. The present work results agree very well
with reference results. The average differences between
Fig. 5. Instantaneous fields and iso-surfaces of temperature
ðT � T oÞ=ðT i � T oÞ ¼ 0:7 for several Ra.
numerical and experimental Nui and Nuo are less than
1.0%.

The mean Nusselt number is presented in Fig. 3 and
compared with results of Kuenh and Goldstein [6]. These
results present a very good agreement with an average
Fig. 6. Instantaneous fields and iso-surfaces of the axial velocity ð�wLÞ=m
for several Ra, g = 2 and k = 2.8. Negative iso-surfaces: dark.

Table 1
Maximum values of velocity components for t = 50 s

Ra �uL=m �vL=m �wL=m

4.6 � 104 77.04 148.06 0.90
4.7 � 104 78.88 149.83 1.23
4.8 � 104 80.91 149.99 1.65
5 � 104 84.38 153.06 1.74
8 � 104 137.96 215.61 16.05
9 � 104 155.64 223.80 23.50
1 � 105 169.14 249.81 25.85
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difference less than 1.53%. In this figure, the geometrical
configuration influence on the Nu is shown. For low Ra

the results are very close. Nevertheless, for higher Ra,
where the advection is predominant, the Nu for g = 2
assume values smaller than that for g = 2.6. This difference
is explained by the fact that a small gap inhibits the advec-
tive heat transfer process. The local and overall agreement
Fig. 8. Time distribution of radial ve

Fig. 7. Instantaneous fields and iso-surfaces of the axial velocity ð�wLÞ=m
for Ra = 105: (a) k = 1 and grid 20 � 80 � 2 and (b) k = 2.8 and grid
16 � 72 � 24.
can be regarded as satisfactory, confirming a full credibility
of the computational code.
5.2. Unstable flow

Three-dimensional simulations using the dynamic sub-
grid scale model were performed for 4.6 � 104

6 Ra 6

7.5 � 105, g = 2, k = 2.8 [24] and a grid of 16 � 72 � 24.
The first grid spacing from the walls is Dr = 0.052 and
the maximum Dr = 0.073. Grid spacing at the other direc-
tions are D/ = 0.087 and Dz = 0.116.

A stable laminar regime exists for Ra up to 4.6 � 104.
When the Ra is increased, the flow becomes unstable, as
shown in Figs. 4 and 5. In Fig. 4b, temporal temperature
distributions were obtained for several Ra at the numerical
probe B placed at r = 1.5, / = 90� and z = 1.4, as illus-
trated by Fig. 4a. The instability onset at the upper part
of the cavity presents periodical oscillations with small
amplitude, as observed for Ra = 4.7 � 104 and 5 � 104

(with fundamental frequencies of 0.7 and 0.74 Hz), in
accordance with Powe et al. [44] and Kuenh and Goldstein
[7]. Moreover, for Ra = 8 � 104 and 105 the oscillations are
affected by non-linear effects. These instabilities will pro-
locity for several Ra at probe B.



Fig. 9. Instantaneous temperature iso-surfaces ðT � T oÞ=ðT i � T oÞ for
several Ra: 0.25 (transparent) and 0.65 (dark).
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mote oscillations of Nui and Nuo and can be precursors to
transition to turbulence.

Fig. 5 shows the effects of instabilities over the thermal
plume structure for Ra presented in Fig. 4. In this figure,
instantaneous fields (r, / planes) and iso-surfaces (0.7) of
dimensionless temperature are visualized. Initially, the
thermal plume oscillates axially very slightly. For Ra 6

8 � 104 these oscillations display a considerable waving
and seem to be moving in all directions. The waves are
attenuated as they move downward and can reach / = 0�
and 180�. As expected, the plume becomes thinner as Ra

is increased.
As the flow becomes unstable, the velocity field suffers

important changes, i.e., the axial velocity component
assumes non-zero values and increases rapidly, as can be
seen in Fig. 6 and Table 1. In this figure, the iso-surfaces
of instantaneous axial velocity, ±0.5, ±0.7, ±6 and ±10
corresponding, respectively, to Ra = 4.7 � 104, 5 � 104,
8 � 104 and 105, are plotted. It is interesting to observe that
there are two pair of counter-rotating structures (positive:
dark) for Ra up to 8 � 104 and that this structures merge
to form only one pair for Ra = 105. The maximum values
of velocity components, found at the plume region, are
given in Table 1 for several values of Ra. As early men-
tioned, these values show that the axial velocity becomes
important as Ra increases. When compared with the veloc-
ity modulus

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�u2 þ �v2 þ �w2
p

, axial velocity represents 0.73%
and 8.54% for Ra = 4.7 � 104 and 105, respectively.

Comparison between two-dimensional approximation
and three-dimensional results for Ra = 105 are presented
in Fig. 7. In Fig. 7a, symmetric axial velocity fields of insig-
nificant magnitude are observed. The images show that it is
impossible numerically to point out the unstable nature of
the flow with two-dimensional simulation, not even with
three-dimensional simulation that adopts grid of two-
dimensional approach.

The results presented show that the onset of unstable
flow appears at Ra ffi 4.7 � 104. As the Rayleigh number
is increased, Ra P 105, the oscillatory flow shows irregular
non-periodic instabilities.

5.3. Transition to turbulence

Fig. 8 shows the temporal distribution of radial dimen-
sionless velocity for several values of Ra. The sampling was
performed using the probe B. The instabilities present
amplification in amplitude and frequency as Ra is
increased. For 1.1 � 105

6 Ra 6 1.5 � 105, these instabili-
ties amplify and change dramatically. For Ra > 1.5 � 105,
a chaotic behavior is observed and a wide band of frequen-
cies appear. These characteristics, more visible for
Ra P 5.2 � 105, are typical of turbulent flow. The behavior
of the flow is dependent on the observed point in the
domain (this is a characteristic of buoyancy-driven flows),
i.e., the temperature, for example, present weak fluctua-
tions at the probe A, near inner cylinder, and strong fluctu-
ations at the probe C, near outer cylinder.
The physical mechanisms of transition to turbulence are
very dependent on the thermal plume, as visualized in Figs.
9–13. In these figures, instantaneous iso-surfaces of dimen-
sionless temperature (0.25 and 0.5: transparent, 0.65: dark)
are presented. Fig. 9 shows, for Ra = 1.1 � 105, a thermal
plume similar to the plume for Ra = 1 � 105 (Fig. 5), but
with big amplitude and small wavelength. Increasing Ra

to 1.5 � 105 gives rise to strong instabilities in angular
direction. Three-dimensional effects are very strong, char-
acterizing the transition to turbulence. When the Rayleigh
number is increased to Ra P 3.1 � 105, the plume gradu-
ally loses spacial periodicity and an irregular topology
appears. As Ra is increased the flow structure becomes very
complex and the organized plume structure disappear. For
Ra = 5.8 � 105 the flow becomes chaotic with turbulent
features, presenting advective transport of the heated mass
for both side of the cavity.

In Fig. 10, the temporal evolution of two isothermal sur-
faces are depicted for Ra = 1.7 � 105 at different times:



Fig. 10. Temporal evolution of the temperature iso-surfaces ðT � T oÞ=ðT i � T oÞ for Ra = 1.7 � 105: 0.25 (transparent) and 0.65 (dark).

Fig. 11. Time distribution of temperature (probe B) and power spectra of temperature fluctuations for Ra = 1.7 � 105.
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39.2–40 s. The three-dimensional effects are very strong and
one can observe that the plume oscillates with vigorous
amplitude, moving from left to right and back, as observed
experimentally in [8,45]. Considering the position of the
center of the plume, one can see that it passes by / = 90�
at t ffi 39.4 s and at t ffi 39.8 s, when the plume complete
one temporal cycle. Approximately, it gives a fundamental
frequency of 2.5 Hz. In order to determine more precisely
this frequency, the Fourier Transform of the time distribu-
tion of temperature at probe B is shown in Fig. 11. It is
found that the fundamental frequency is approximately
2.33 Hz. We see that the fundamental frequency deter-
mined by the visualization is close to that frequency deter-
mined by the statistical procedure.

Another temporal series (29.2–30 s) of three isothermal
surfaces for Ra = 5.8 � 105 (Fig. 12), shows chaotic fea-
tures. The lower frequencies are controlled by the gap of
the cavity, and the higher frequencies are controlled by
Ra. Certainly, all these frequencies cannot be visualized
using the isothermal surfaces. Alternatively, the vortical
structures associated with irregular thermal structures are
given in Fig. 13, using streamlines projected at three planes



Fig. 12. Temporal evolution of temperature iso-surfaces ðT � T oÞ=ðT i � T oÞ for Ra = 5.8 � 105: 0.25, 0.5 (transparent) and 0.65 (dark).

Fig. 13. Instantaneous streamlines combined with iso-surfaces of temper-
ature ðT � T oÞ=ðT i � T oÞ ¼ 0:65 for two values of Ra.

3664 E.L.M. Padilla, A. Silveira-Neto / International Journal of Heat and Mass Transfer 51 (2008) 3656–3668
(r,/). At the upper part of the annulus the flow is very
unstable and the intensity of turbulence is high. At the
lower part of the annulus, the flow is still unstable, but
the intensity of turbulence is smaller.

Numerical results of the present work are in agreement
with experimental observations of Powe et al. [44], Bishop
et al. [45], Kuehn and Goldstein [7], Labonia and Guj [9]
and with the sketch about the structure of the flow, present
by McLeod and Bishop [8]. It is important to empathize
that, as shown in Fig. 13, even in the lower part of the cav-
ity the flow is unstable.

The authors of the present work believe that the results
presented here can elucidate better the physical behavior of
the flow in the entire domain, which is very unstable.
5.3.1. Energy spectrum

The Kolmogorov theory [46] for developed turbu-
lence determines that the inertial band of the spectra pre-
sents a �5/3 law. This theory gives rise to the famous
Kolmogorov law [27]. In the present work, this law was
used in order to verify if the simulated flows attain the tur-
bulent regime.

The energy spectrum of the radial velocity fluctuation
(probe B) for several Ra are presented in Fig. 14. First, it
can be observed that the energy of the large structures
increases for higher values of Ra. For Ra = 1.5 � 105 the
spectral energy is almost concentrated at the bigger struc-
tures, showing an inertial slope greater than �5/3. For
higher Ra the energy is better distributed over all the spec-
trum of turbulent structures, giving a slope nearest to �5/3,
in accordance with the Kolmogorov law. For instance, the
energy spectrum for Ra = 5.8 � 105 and 7.5 � 105 present a



Fig. 14. Energy spectra of the radial velocity component fluctuation for several Ra.
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good approximation of �5/3. Also, one observes that the
inertial range increases with Ra.

The energy spectrum for Ra = 1.5 � 105 suggests an
important contribution from the small structures. It is con-
firmed from the turbulent eddy viscosity field, where max-
imum value is 0.84m. As an additional commentary, the
maximum mt obtained for Ra = 105 and 1.1 � 105 are
0.05m and 0.15m.
5.3.2. Comparison with experimental data
Statistical results are compared with experimental

results [24] and with the correlation of Itoh et al. [10]. Fuk-
uda et al. [24] used an experimental device with g = 2 and
k = 3.55 and hot-wire anemometry. Itoh et al. [10] used
the characteristic length defined as lm ¼ lnðRo=RiÞ

ffiffiffiffiffiffiffiffiffi
RoRi

p

and experimental results [4,1] in order to determine an
expression for Nu, which is given by

Nu ¼ 0:18
ðRamÞ1=4

Pr
; ðPr ¼ 0:71; Ram P 7:1� 103Þ;

ð24Þ
where Ram is the Rayleigh number based on lm. Eq. (22) is
still valid for unstable flow, but redefining this expression
to calculate Nui and Nuo (Eq. 23), the following expressions
are now used:

Nui ¼
1

2pkðt2 � t1Þ

Z t2

t1

Z k

0

Z 2p

0

Nui d/dzdt; ð25Þ

Nuo ¼
1

2pkðt2 � t1Þ

Z t2

t1

Z k

0

Z 2p

0

Nuo d/dzdt; ð26Þ
where (t2 � t1) represents the time to obtain statistical
samples.

Fig. 15 shows the radial distribution of the mean dimen-
sionless temperature at / = 90� and 345� and z = 1.4, for
four values of Ra. The temperature distribution at /
= 90� decreases as Ra increases, as a consequence of the
diffusion of energy in angular direction. The agreement
between these results and experiment is very good, except
for Ra = 1.1 � 105 and 1.7 � 105 at / = 90�. These differ-
ences observed for / = 90� can be due to experimental



Table 2
Mean Nusselt number at inner and outer cylinder surfaces, g = 2, k = 2.8
and grid 16 � 72 � 24

Ra dt (s) Nui Nuo Error (%)

4.6 � 104 1.47 � 10�3 2.826 2.826 0.00
4.7 � 104 1.47 � 10�3 2.842 2.842 0.00
4.8 � 104 1.47 � 10�3 2.858 2.858 0.00
5.0 � 104 1.46 � 10�3 2.888 2.888 0.00
8.0 � 104 1.39 � 10�3 3.259 3.261 0.06
9.0 � 104 1.38 � 10�3 3.359 3.360 0.03
1.0 � 105 1.36 � 10�3 3.450 3.449 0.03
1.1 � 105 1.39 � 10�3 3.533 3.532 0.03
1.5 � 105 1.20 � 10�3 3.926 3.898 0.71
1.7 � 105 1.04 � 10�3 4.064 4.043 0.52
2.3 � 105 1.09 � 10�3 4.407 4.386 0.48
3.1 � 105 9.76 � 10�4 4.802 4.778 0.50
5.2 � 105 7.78 � 10�4 5.596 5.554 0.75
5.8 � 105 7.80 � 10�4 5.774 5.728 0.80
7.5 � 105 7.09 � 10�4 6.250 6.196 0.86

Fig. 16. Mean Nusselt number as function of Rayleigh number for g = 2
and k = 2.8.

Fig. 15. Comparison with experimental time-averaged temperature distributions for several Ra.
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error [24], which is assumed to be 30% (maximum) for
flows at low velocities.

The agreement of the Nusselt number with results of
Itoh et al. [10] and Fukuda et al. [24] is satisfactory, as
can be visualized in Fig. 16. In this figure, transition to tur-
bulence is suggested corresponding to 1.1 � 105 < Ra

6 5.8 � 105. It was determined using physical analysis pre-
sented in the previous Sections 5.2 and 5.3. In transition
and turbulent regimes there is a difference between the
results of the present work and that of Itoh et al. [10]
and Fukuda et al. [24]. The average of those differences
are 3.09% and 2.93%, respectively. It seems that numerical
results of Fukuda et al. [24] give instabilities that are over
predicted. On the other hand, the results show that transi-
tion to turbulence and turbulence accelerate the heat trans-
fer process.

The heat balance between the inner and outer cylinders
surfaces is very good, as shown at Table 2, where the rela-
tive difference between Nui and Nuo is smaller than 1% for
all cases considered. This table also shows the average time
step used.
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6. Conclusions

Numerical simulations of natural convection inside an
annular cavity, composed by two horizontal concentric cyl-
inders, were performed using large-eddy simulation method-
ology with dynamic sub-grid scale model. Unstable flows
were simulated and analyzed, considering the parameter
g = 2 and k = 2.8 and several Rayleigh numbers. It is well
know that LES is not applicable to simulate transition to tur-
bulence. This is a conceptual point of view. Nevertheless, this
methodology was applied in the present work and the phys-
ical and overall results seem to demonstrate that LES can be
used to predict transition to turbulence problems.

The two-dimensional simulations cannot provide any
physical instabilities, up to Ra = 105, as expected. The
three-dimensional simulations pointed out the first typical
instabilities of the transition process at the upper part of
the cavity. As the Rayleigh number increases, the flow ini-
tially periodic, becomes unstable and irregular and the
instabilities reach the lower part of the cavity. In turbulent
regime, the flow shows strong and chaotic instabilities,
where a large band of frequencies are present.

The dynamic characteristics of the flow, as well as physical
aspects of the thermal plume transition were well captured.
Turbulent structures were found in all the interior of the cav-
ity. Nevertheless, at the lower part of the cavity these struc-
tures posses smaller turbulence intensity. The Ra values for
the onset of the first instabilities and onset of transition to
turbulence and turbulent regime were suggested.

The influence of the instabilities on the heat transfer was
quantified. With increasing of Ra, the slope of the mean Nus-
selt number changes approximately for Ra P 1.5 � 105.
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